|本期目录/Table of Contents|

[1]李圳鹏,何文,吴贤振,等.节理厚度对应力波传播和动力特性影响的SHPB试验[J].江西理工大学学报,2021,42(01):64-73.[doi:10.13265/j.cnki.jxlgdxxb.2021.01.010]
 LI Zhenpeng,HE Wen,WU Xianzhen,et al.SHPB tests of the influence of different joint thickness on numerical simulation of stress wave propagation and dynamic behavior of red sandstone[J].Journal of Jiangxi University of Science and Technology,2021,42(01):64-73.[doi:10.13265/j.cnki.jxlgdxxb.2021.01.010]


点击复制
节理厚度对应力波传播和动力特性影响的SHPB试验(/HTML)
分享到:

《江西理工大学学报》[ISSN:2095-3046/CN:36-1289/TF]

卷:
42卷
期数:
2021年01期
页码:
64-73
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
SHPB tests of the influence of different joint thickness on numerical simulation of stress wave propagation and dynamic behavior of red sandstone
文章编号:
2095-3046(2021)01-0064-10
作者:
李圳鹏1 何文12 吴贤振1 石文芳1
(1. 江西理工大学资源与环境工程学院,江西 赣州 341000; 2. 钨资源高效开发及应用技术教育部工程研究中心,江西 赣州 341000)
Author(s):
LI Zhenpeng1 HE Wen12 WU Xianzhen1 SHI Wenfang1
(1. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China;2. Engineering Research Center of High-Efficiency Development and Application Technology of Tungsten Resources, Ministry of Education, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China)
关键词:
SHPB红砂岩节理岩体应力波传播数值模拟
分类号:
TU45
DOI:
10.13265/j.cnki.jxlgdxxb.2021.01.010
文献标志码:
A
摘要:
为了研究含平行节理岩体对地下工程活动的影响,采用不同节理厚度的红砂岩试样,借助分离式Hopkinson压杆(SHPB)装置,对节理红砂岩试样的应力波传播和破坏模式进行研究,结合有限元软件ANSYS/LS-DYNA对试验过程进行了数值模拟, 并且增加了节理厚度为2 mm和6 mm的模拟内容。研究结果表明:红砂岩中平行节理的存在影响着应力波的传播。随着节理厚度的增加,反射系数呈线性增大,透射系数呈弱幂函数减小,其最小值为52.28%,红砂岩的破坏形态变化不明显,但靠近入射杆一端的破坏程度变大,动态峰值强度呈先下降后上升的趋势,相较于初始值其峰值强度降低了6.56%~33.77%,透射系数和峰值强度曲线的变化趋势相似;节理岩石的入射能、反射能和透射能均随冲击速度的增大呈增加趋势,但入射能比反射与透射能敏感性更大,损伤变量随冲击速度呈二次函数增长,其值越大,岩石的损伤破碎程度越高。

参考文献/References:

[1] 夏才初,孙宗颀.工程岩体节理力学[M]. 上海:同济大学出版社,2002.[2] 王乐华,柏俊磊,李建林,等. 非贯通节理岩体单轴压缩试验研究[J]. 水利学报,2014,45(12):1410-1418.[3] 李祥龙,王建国,张智宇,等. 应变率及节理倾角对岩石模拟材料动力特性的影响[J]. 爆炸与冲击,2016,36(4):483-490.[4] 杨仁树,王茂源,杨阳,等. 充填材料对节理岩石动力学性能影响的模拟试验[J]. 振动与冲击,2016,35(12):125-131.[5] 刘红岩,邓正定,王新生,等. 节理岩体动态破坏的SHPB相似材料试验研究[J]. 岩土力学,2014,35(3):659-665.[6] 刘红岩,黄妤诗,李楷兵,等. 预制节理岩体试件强度及破坏模式的试验研究[J]. 岩土力学,2013,34(5):1235-1241,1246.[7] LI J C,MA G W. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3):471-478.[8] 李娜娜,李建春,李海波,等.节理接触面对应力波传播影响的SHPB试验研究[J]. 岩石力学与工程学报,2015,34(10):1994-2000.[9] LI J C,LI N N,LI H B,et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint[J]. International Journal of Impact Engineering, 2017, 105: 109-116.[10] ZHOU Z L,LI D Y,MA G W,et al. Failure of rock under dynamic compressive loading[J]. Journal of Central South University of Technology, 2008, 15(3):339-343.[11] LI D Y,HAN Z Y,ZHU Q Q,et al. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117:162-170.[12] ZHANG L M,LV S R,LIU H Y. Test study on dynamic mechanical property of jointed rock mass[J]. Advanced Materials Research, 2013, 868: 282-286.[13] HAN Z Y,LI D Y,ZHOU T,et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131:104352.[14] 金解放,李夕兵,殷志强,等.轴压和围压对循环冲击下砂岩能量耗散的影响[J]. 岩土力学,2013,34(11):3096-3102.[15] ZHOU Z L,CAI X,MA D,et al. Water saturation effects on dynamic fracture behavior of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114:46-61.[16] LIFSHITZ J M,LEBER H. Data processing in the split Hopkinson pressure bar tests[J]. International Journal of Impact Engineering, 1994, 15(6): 723-733.[17] HOLMQUIST T J,JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78(5):051003.[18] LING T L,WU S F,LIU D S,et al. Determination of Holmquist-Johnson-Cook model parameters for sandstone[J]. Journal of the China Coal Society, 2018, 43(8):2211-2216.[19] ZHAN J W,LI T. SHPB tests and numerical simulation of dynamic behavior of grouting-reinforced fractured mudstone[J]. Rock and Soil Mechanics, 2017, 38(7):2096-2102.[20] LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(6):187-197.[21] MENG Q B,ZHANG M W,HAN L J,et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3873-3886.[22] ZHU Q Q,LI D Y,HAN Z Y,et al. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115:33-47.[23] LI D Y,SUN Z,XIE T,et al. Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths[J]. Engineering Geology, 2017, 228:270-281.[24] FENG F,LI X B,ROSTAMI J,et al. Numerical investigation of hard rock strength and fracturing under polyaxial compression based on mogi-coulomb failure criterion[J]. International Journal of Geomechanics, 2019, 19(4):04019005.[25] LI X B,FENG F,LI D Y,et al. Failure characteristics of granite influenced by sample height-to-width ratios and intermediate principal stress under true-triaxial unloading conditions[J]. Rock Mechanics and Rock Engineering, 2018, 51(5):1321-1345.[26] SCHULER H,MAYRHOFER C,THOMA K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[J]. International Journal of Impact Engineering, 2006, 32(10):1635-1650.[27] 郭连军,杨跃辉,张大宁,等. 冲击荷载作用下磁铁石英岩破碎能耗分析[J]. 金属矿山,2014(8):1-5.[28] LENG Z D,LU W B,CHEN M,et al. Explosion energy transmission under side initiation and its effect on rock fragmentation[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:245-254.[29] 喻勇,张宗贤. 岩石直接拉伸破坏中的能量耗散及损伤特征[J]. 岩石力学与工程学报,1998,17(4):386-392.[30] 夏昌敬,谢和平,鞠杨,等. 冲击载荷下孔隙岩石能量耗散的实验研究[J]. 工程力学,2006,23(9):1-5.[31] 金丰年,蒋美蓉,高小玲. 基于能量耗散定义损伤变量的方法[J]. 岩石力学与工程学报,2004,23(12):1976-1980.[32] 杨阳,杨仁树,王建国. 节理厚度对岩石动力特性影响的模拟试验[J]. 中国矿业大学学报,2016,45(2):211-216

相似文献/References:

[1]赵奎,腾天野,曾鹏,等.单轴压缩下不同含水率红砂岩声发射特性试验研究[J].江西理工大学学报,2019,40(05):1.[doi:10.13265/j.cnki.jxlgdxxb.2019.05.001 ]
 ZHAO Kui,TENG Tianye,ZENG Peng,et al.Experimental study on acoustic emission characteristics of red sandstone under uniaxial compression with different water content[J].Journal of Jiangxi University of Science and Technology,2019,40(01):1.[doi:10.13265/j.cnki.jxlgdxxb.2019.05.001 ]

备注/Memo

备注/Memo:
收稿日期:2020-01-08
基金项目:中国博士后科学基金资助项目(2019M650156);江西省博士后科研自足项目(2018KY41);赣州市科技计划项目
作者简介:李圳鹏(1996— ),男,硕士研究生,主要从事岩石动力学等方面的研究。E-mail:Lizhenpeng98@163.com

更新日期/Last Update: 1900-01-01