|本期目录/Table of Contents|

[1]蒋旭,苏未安,殷超.纳米硅薄膜厚度对其反射与吸收性能的影响[J].江西理工大学学报,2020,41(01):90-96.[doi:10.13265/j.cnki.jxlgdxxB.2020.01.014 ]
 JIANG Xu,SU Weian,YIN Chao.Study on the influence of nano-silicon film thickness on its reflection and aBsorption properties[J].Journal of Jiangxi University of Science and Technology,2020,41(01):90-96.[doi:10.13265/j.cnki.jxlgdxxB.2020.01.014 ]


点击复制
纳米硅薄膜厚度对其反射与吸收性能的影响(/HTML)
分享到:

《江西理工大学学报》[ISSN:2095-3046/CN:36-1289/TF]

卷:
41卷
期数:
2020年01期
页码:
90-96
栏目:
数学·物理
出版日期:
2020-02-29

文章信息/Info

Title:
Study on the influence of nano-silicon film thickness on its reflection and aBsorption properties
文章编号:
2095-3046(2020)01-0090-07  
作者:
蒋旭 苏未安 殷超
(江西理工大学理学院,江西 赣州 341000)
Author(s):
JIANG XuSU WeianYIN Chao
(School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China)
关键词:
纳米硅薄膜时域有限差分(FDTD)法布里-珀罗干涉反射与吸收
分类号:
TN304.0  
DOI:
10.13265/j.cnki.jxlgdxxB.2020.01.014
文献标志码:
A
摘要:
针对纳米硅薄膜的厚度会影响其反射与吸收性能的问题,采用时域有限差分(FDTD)方法对纳米硅薄膜进行了模拟计算。分析了纳米硅薄膜对入射电磁波的衰减现象,并详细地讨论了纳米硅薄膜的厚度对其反射率、吸收率及其他光学性能的影响。计算结果表明,纳米硅薄膜对入射电磁波存在显著的吸收作用,硅材料的薄膜化有效地增强了其吸收率,厚度为650 nm的硅薄膜在入射光波长为481 nm时吸收率可达0.62,而半无限型体材硅的吸收率仅为0.48。纳米硅薄膜的反射率、透射率和吸收率随其厚度的变化均呈现出明暗相间的条纹结构,表明薄膜干涉效应对其性质有显著的影响。其中,厚度为500 nm的硅薄膜在宽光谱范围内具有较高的吸收率,适合新一代光电器件方面的应用。

参考文献/References:

[1] Saloma, Nasution A, Imran I, et al. Improvement of concrete duraBility By nanomaterials[J]. Procedia Engineering, 2015, 125: 608-612.
[2] Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.
[3] Chen T, Dai L. CarBon nanomaterials for high-performance supercapacitors[J]. Materials Today, 2013, 16(7/8): 272-280.
[4] Zhou M, Wang H L, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carBon nanomaterials[J]. Chemical Society Reviews, 2016, 45(5): 1273-1307.
[5] Smith B R, GamBhir S S. Nanomaterials for in vivo imaging[J]. Chemical Reviews, 2017, 117(3): 901-986.
[6] Hong G, Diao S, Antaris A L, et al. CarBon nanomaterials for Biological imaging and nanomedicinal therapy[J]. Chemical Reviews, 2015, 115(19): 10816-10906.
[7] Yang X, Yang M, Pang B, et al. Gold nanomaterials at work in Biomedicine[J]. Chemical Reviews, 2015, 115(19): 10410-10488.
[8] 张彩霞,刘维平. 纳米材料及其应用现状与发展[J]. 江西理工大学学报,2001,22(4):247-252.
[9] 刘锐. 纳米材料应用现状及发展趋势[J]. 石化技术,2018(8):294-295.
[10] Das D, Kar D. Structural studies of n-type nc-Si–QD thin films for nc-Si solar cells[J]. Journal of Physics and Chemistry of Solids, 2017, 111: 115-122.
[11] Kar D, Das D. Superior optical response of size-controlled silicon nano-crystals in a-Si: H/nc-Si: H superlattice films for multi-junction solar cells[J]. RSC Advances, 2015, 75: 61118-61126.
[12] Sagar D M, Atkin J M, Palomaki P K B, et al. Quantum confined electron-phonon interaction in silicon nanocrystals[J]. Nano letters, 2015, 15(3): 1511-1516.
[13] Franklin A D. Nanomaterials in transistors: From high-performance to thin-film applications[J]. Science, 2015, 6249(349): aaB2750.
[14] Dong P, Chen Y K, Duan G H, et al. Silicon photonic devices and integrated circuits[J]. Nanophotonics, 2014, 3(4/5): 215-228.
[15] Ali N, Hussain A, Ahmed R, et al. Advances in nanostructured thin film materials for solar cell applications[J]. RenewaBle and SustainaBle Energy Reviews, 2016, 59: 726-737.
[16] ABdulraheem Y, Gordon I, Bearda T, et al. Optical Bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon By PECVD[J]. AIP Advances, 2014, 4(5): 057122.
[17] Crose M, Kwon J S I, Nayhouse M, et al. Multiscale modeling and operation of PECVD of thin film solar cells[J]. Chemical Engineering Science, 2015, 136: 50-61.
[18] Andreani L C, Bozzola A, Kowalczewski P, et al. Photonic light trapping and electrical transport in thin-film silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 135: 78-92.
[19] Buchenko VV, Rodionova TV, Sutyagina AS, et al. Optical properties of thin nanosilicon films[J]. Optical Materials, 2016, 62: 612-620.
[20] GriBov B G, Zinov’ev K V, Kalashnik O N, et al. Production of Silicon Nanoparticles for Use in Solar Cells[J]. Semiconductors, 2017, 51(13): 1675-1680.
[21] Chen C J. Physics of solar energy[M]. HoBoken:John Wiley & Sons, 2011: 307-312.
[22] Benavides-Cruz M, Nieto-Rodríguez M, Enciso-Aguilar M, et al. Parametric analysis of perfect matched layer model of finite difference time domain method[J]. Applied Mechanics and Materials,2009,15:139-144.
[23] Ren R, Zhong Z. Enhanced light aBsorption of silicon solar cells with dielectric nanostructured Back reflector[J]. Optics Communications, 2018, 417:110-114.
[24] 刘恩科,朱秉升,罗晋生. 半导体物理学[M].第7版. 北京:电子工业出版社,2011:278-285.
[25] Fei E, Qiu Y G, Yong A. A new method of processing the faBry-perot interference fringes[J]. Optical Technique, 2009, 35(4):498-501.
[26] Kats M A, Blanchard R, Ramanathan S, et al. Thin-film interference in lossy, ultra-thin layers[J]. Optics and Photonics News, 2014, 25(1):40-47.
[27] 罗园园,吴评. 大学物理[M]. 第2版. 北京:高等教育出版社,2011:158-168.
[28] Wang Y, Miska P, Pilloud D, et al. Transmittance enhancement and optical Band gap widening of Cu2O thin films after air annealing[J]. Journal of Applied Physics, 2014, 115(7):073505.
[29] Kanematsu D, YoshiBa S, Masakazu Hirai, et al. OBservation of quantum size effect from silicon nanowall[J]. Nanoscale Research Letters, 2016, 11(1):530.
[30] Narasimhan V K, Cui Y. Nanostructures for photon management in solar cells[J]. Nanophotonics, 2013, 2(3):187-210.
[31] 任芮. 应用硅纳米线阵列结构提高太阳能电池效率方法的研究[D]. 南京:南京理工大学,2015.
[32] Alemu N, Chen F. Plasmon-enhanced light aBsorption of thin-film solar cells using hemispherical nanoparticles[J]. Physica Status Solidi (A), 2014, 211(1):213-218.
[33] Yuan Z H, Li X N, Jing H, et al. ABsorption enhancement and sensing properties of Ag diamond nanoantenna arrays[J]. Chinese Physics B, 2015, 24(7):262-267.
[34] Yuan Z H, Li X N, Jing H. ABsorption enhancement of thin-film solar cell with rectangular ag nanoparticles[J]. Journal of Applied Sciences, 2014, 14(8):823-827.
[35] Yuan Z H, Li X N, Jing H. ABsorption enhancement of silicon solar cell with Ag nanoparticles By surface plasmons resonance[J]. Optoelectronics Letters, 2013, 9(6):405-409.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-06-25
基金项目:国家自然科学基金资助项目(11464016)
作者简介:蒋旭(1993— ),男,硕士研究生,主要从事电子材料与器件等方面的研究,E-mail: jiangxu5397@gmail.com。
通信作者:苏未安(1978— ),男,博士,副教授,主要从事凝聚态物理方面的研究,E-mail: suweian79@126.com。

更新日期/Last Update: 2020-04-08